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Abstract ATP binding cassette (ABC) transporters comprise
an extended protein family involved in the transport of a broad
spectrum of solutes across membranes. They consist of a
common architecture including two ATP-binding domains
converting chemical energy into conformational changes and
two transmembrane domains facilitating transport via alter-
nating access. This review focuses on the biogenesis, and
more precisely, on the degradation of mammalian ABC
transporters in the endoplasmic reticulum (ER). We enlighten
the ER-associated degradation pathway in the context of
misfolded, misassembled or tightly regulated ABC trans-
porters with a closer view on the cystic fibrosis transmem-
brane conductance regulator (CFTR) and the transporter
associated with antigen processing (TAP), which plays an
essential role in the adaptive immunity. Three rather different
scenarios affecting the stability and degradation of ABC
transporters are discussed: (1) misfolded domains caused by
a lack of proper intra- and intermolecular contacts within the
ABC transporters, (2) deficient assembly with auxiliary
factors, and (3) arrest and accumulation of an intermediate
or ‘dead-end’ state in the transport cycle, which is prone to be
recognized by the ER-associated degradation machinery.
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ERAD ER-associated degradation
CFTR cystic fibrosis conductance regulator
BLS bare lymphocyte syndrome
BHV1 bovine herpesvirus 1

Architecture of ABC transporters

ATP-binding cassette (ABC) transporters build up a family of
membrane proteins that translocate a wide range of solutes
across extra- and intracellular membranes. The ABC super-
family is represented in almost all known organisms from
bacteria to human. ABC transporters came into focus
especially through the first description of the so-called P-
glycoprotein (P-gp), which conferred a multidrug resistance
phenotype to mammalian cells (Debenham et al. 1982;
Kartner et al. 1983). Further medically important members
have been identified among which e.g. homologues of
P-glycoprotein in pathogenic microorganisms, the cystic
fibrosis transmembrane conductance regulator (CFTR), the
transporter associated with antigen processing (TAP), and a
lot more (Dean and Annilo 2005). In bacteria and archaea,
the ABC transporters are involved in the import of essential
compounds, e.g. sugars, amino acids, vitamins or metal
ions as well as in the extrusion of e.g. toxic compounds,
antibiotics, or cell wall components, whereas in eukarya,
ABC genes function exclusively as exporters pumping
solutes to the outside of the cell or into an intracellular
compartment.
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The general architecture of ABC transporters emphasizes
four domains, two nucleotide-binding domains (NBD) cata-
lyzing the hydrolysis of ATP and two transmembrane domains
(TMD) involved in solute binding and passageway across the
membrane. Highly conserved motifs are found in the NBDs
(Walker A and B, ABC signature, D, H, and Q loops), which
are important for function (for review see (Schmitt and Tampé
2002)). The ATP hydrolysis cycle includes four basic steps
of (1) ATP binding to each NBD monomer, (2) NBD dimer
formation, (3) sequential hydrolysis of the two sandwiched
ATPs, and finally (4) dissociation of the dimer (Janas et al.
2003; Smith et al. 2002).

ABC transporters are classified according to their NBD
sequence. Eukaryotic members of this superfamily are
organized either as full transporters harboring all four domains
in one gene product, or as half transporters forming homo- or
heterodimers. ABC genes are highly conserved between
species reflecting their essential physiological functions. In
mammalia, the genes can be divided into seven subfamilies
(A to G) based on sequence homology, domain combination,
and genomic organization (exon-intron structure) (Dean et al.
2001). The human ABCA subfamily comprises 12 full
transporters including members of importance for the
transport of cholesterol or retinol derivatives. The ABCB
subfamily contains four full and seven half transporters.
ABCB1 (MDR1/P-gp) confers multidrug resistance as
described above. ABCB4 and ABCB11, both located in the
liver, are involved in the secretion of lipids and bile acids.
The half transporters ABCB2/3 (TAP1/2) form a heterodi-
meric peptide transport complex essential for adaptive
immunity (see below). The homodimeric peptide half
transporter ABCB9 (TAP-like) is found in the lysosomal
compartment, whereas the four other members ABCB6,
ABCB7, ABCB8, and ABCB10 are located in mitochondria
involved in iron metabolism and maturation of cytosolic Fe–
S cluster protein. The ABCC subfamily contains 12 full
transporters with high impact in human physiology (e.g. ion
homeostasis or insulin secretion). The cystic fibrosis trans-
membrane conductance regulator (CFTR) protein represents
an ATP-regulated chloride channel in the plasma membrane.
Mutations in CFTR cause cystic fibrosis, a frequent disease
that mainly affects the lungs and digestive system causing
early death. The four members of the ABCD subfamily are
involved in peroxisome biogenesis and long chain fatty acid
oxidation. The ABCE and ABCF subfamily lacking the
TMD, participate in translation initiation and ribosome
biogenesis. The ABCG subfamily is composed of six
“reverse” half transporters (NBD–TMD). The first member
of this subfamily was identified in Drosophila melanogaster
as modulator of eye pigmentation (white locus). Mammalian
ABCG1 play a role in cholesterol transport, while ABCG2
confers drug resistance to cancer cells and is highly
expressed in a subpopulation of hematopoetic stem cells.

High-resolution structures of four different ABC trans-
porters (one exporter and three importers) have been
published: Sav1866 (Dawson and Locher 2006), BtuC2D2

(Locher et al. 2002), HI1470/71 (Pinkett et al. 2007) and
ModB2C2 in complex with its binding protein ModA
(Hollenstein et al. 2007), all of them of bacterial origin.
The x-ray structure (3.0 Å) of Sav1866 from Staphylococ-
cus aureus shows an outward-facing conformation reflect-
ing the ATP-bound state, with the two NBDs in tight
contact and the two TMDs forming a central cavity closed
towards the cytoplasm and exposed to the extracellular
space (Dawson and Locher 2006). The crystal structure of
the Escherichia coli BtuC2D2 (3.2 Å), translocating vitamin
B12 from the periplasmic binding protein BtuF into the
cytoplasm, revealed a tight contact of both, the two ATP-
binding cassettes (BtuD) and the two membrane-spanning
subunits (BtuC) with a translocation pathway that is
blocked to the cytoplasm (Locher et al. 2002). More
recently, the 2.6-Å crystal structure of the complex
BtuCD-F revealed a putative post-translocation intermedi-
ate state, in which the translocation pathway is closed to
both sides of the membrane (Hvorup et al. 2007). The 2.4-
Å crystal structure of a putative metal-chelate-type ABC
transporter encoded by the genes HI1470/71 of Haemo
philus influenzae in nucleotide-free states exhibits an
inward-facing conformation and involves relatively modest
rearrangements compared to ButC2D2 structure (Pinkett et
al. 2007). The 3.1-Å crystal structure of a putative
molybdate transporter ModB2C2 from Archaeoglobus ful-
gidus has been solved in complex with its binding protein
ModA. Here, the TMDs show an inward-facing conforma-
tion, whereas the NBDs are in an open, nucleotide-free
conformation and the attached binding protein aligns the
solute-binding cleft with the entrance to the presumed
translocation pathway. Structural comparison with Sav1866
suggests a common alternating access and release mecha-
nism, with binding of ATP promoting an outward-facing
conformation and dissociation of the hydrolysis products
supporting an inward-facing conformation (Hollenstein
et al. 2007; Parcej and Tampé 2007). Although there are
differences as to the various transporters, the summary of
the structural data reveal an ATP-switch model for function,
in which the paired NBDs switch between an ATP-
dependent closed conformation and a nucleotide-free, open
conformation to drive the translocation of the ligand (Abele
and Tampé 2004; Higgins and Linton 2004).

Beside the structural analysis, there are a variety of
functional studies towards understanding ABC transporters
on a molecular level. Very recently, certain residues were
for example identified downstream of the Walker B motif,
the so-called H-loop, which interferes with ATP hydrolysis
but not with binding (Hofacker et al. 2007; Zaitseva et al.
2006). Another approach pointed out essential residues for
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the coupling of peptide binding and transport, reasoning
that the transmission interface of the subunits of the
eukaryotic peptide transporter TAP is restructured during
ATP hydrolysis (Herget et al. 2007). Moreover, cysteine-
scanning mutagenesis and subsequent cross-linking analy-
sis have been widely used to determine certain solute
binding characteristics for P-glycoprotein (Loo et al. 2006a,
b), organization of the intracellular loops of BmrA (Dalmas
et al. 2005), solute specificity of organic anion transporter
MRP1 (Conseil et al. 2006), domain arrangement of MDR
transporters (Zolnerciks et al. 2007), and several more
[reviewed in (Linton 2007)]. Taken together, the extended
knowledge on distribution, function and structure of ABC
transporters lays the basis for molecular understanding of
solute transport in a variety of biochemical processes within
both prokaryotic and eukaryotic cells. The next chapter
focuses on cellular interplay of these molecules and pro-
vides a closer insight into ABC transporter biogenesis and
degradation.

ER-associated proteasomal degradation of ABC
transporters

Unfolded and misfolded proteins in the endoplasmic reticu-
lum (ER) are recognized by the ER-associated proteasomal
degradation (ERAD) machinery and transported to the cy-
toplasm, where they are ultimately degraded [for review see
(Bar-Nun 2005; McCracken and Brodsky 2005; Meusser
et al. 2005)]. In mammalian cells, the process of ERAD can
be divided into four steps: recognition, retrotranslocation,
ubiquitination, and degradation (Fig. 1). The recognition of
un- or misfolded proteins is controlled by ER degradation-
enhancing α-mannosidase-like protein (EDEM), which
discriminates unfolded proteins from folded proteins
(Hosokawa et al. 2001; Molinari et al. 2003) or by Osteo-
sarcoma 9 (OS9) and the XTP3-transactivated gene product
B (XTP3B) (Buschhorn et al. 2004; Cruciat et al. 2006).
After the recognition process, cleavage of disulfide bonds
and unfolding of the ERAD substrates takes place before
they are subsequently handed over to the retrotranslocation
machinery, which consists of p97, Derlin-1 and valosin-
containing protein (VCP)-interacting membrane protein
(VIMP) (Ye et al. 2004). Similar to Der1p in yeast (Knop
et al. 1996), Derlin-1 may form a retrotranslocation channel
in the ER membrane; it thus links the recognition of
misfolded ER proteins to the ubiquitin-mediated proteasomal
degradation in the cytosol (Lilley and Ploegh 2004; Ye et al.
2004). Derlin-1 is found to be associated with p97 adapted
by VIMP. Derlin-2 and Derlin-3 are other Der1 homologs
also involved in ERAD, although the exact underlying
mechanism remains unclear. However it is known that p97
(also called cdc48 or VCP) is a cytosolic AAA-ATPase

(ATPase associated with various cellular activities) and
recruits unfolded ER proteins to the cytosol (Rabinovich et
al. 2002; Ye et al. 2001). Retrotranslocated proteins are
subsequently ubiquitinated by the E1–E2–E3 ubiquitin
system. The corresponding ubiquitin conjugase (E2) and
ligase (E3) have been shown to be specific for luminal
(ERAD-L) (recruiting Hrd1 as E3) and cytosolic (ERAD-C)
misfolded domains (consisting of Doa10 instead) (Carvalho
et al. 2006). Once a substrate is ubiquitinated and deglycosy-
lated, the proteasomal degradation takes place in the cytosol.

The first mammalian ER protein shown to be a substrate
for ERAD has been the ABC transporter CFTR (Jensen
et al. 1995; Ward et al. 1995). The proteasomal degradation
of both, the wild-type CFTR and the disease-associated
ΔPhe508 mutant were found to take place in an ubiquitin-
dependent manner. The mutation of Phe508, which is located
in the cytosolic NBD, causes CFTR misfolding and
decreased abundance at the cell surface. Although indepen-
dent from the ER-resident chaperone calnexin (Farinha and
Amaral 2005), the degradation process of CFTR was shown
to be influenced by small heat shock proteins maintaining its
solubility (Ahner et al. 2007). The implication of Derlin-1
and p97 in CFTR degradation was confirmed by physical
interaction with both proteins (Sun et al. 2006). Consistent
with observations in yeast, p97-bound CFTR was ubiquiti-
nated, whilst Derlin-1-associated CFTR was not, which
confirmed a cytosolic localization of p97 and Derlin-1
activity in the ER-lumen. Ectopic overexpression as well as
knock down approaches of Derlin-1, resulting in the increase

Fig. 1 The ER-associated degradation pathway. Un- or misfolded
proteins are recognized by the EDEM membrane protein that hands
the proteins over to the retrotranslocation proteins Derlin-1 and VIMP.
The VIMP-interacting AAA-ATPase p97 operates as unfolding motor
promoting ubiquitination and ultimate degradation by the proteasome
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and decrease of CFTR levels, respectively, underlined the
key role of Derlin-1 in CFTR degradation and biogenesis. In
addition, the mode of action of p97 in CFTR degradation has
recently been investigated in detail (Carlson et al. 2006). The
protein was reconstituted in a cell-free system to define the
precise contribution of p97. Complete absence of p97,
however only resulted in a 50% decrease of degradation.
Hence, p97 was found to function as a non-essential but
important auxiliary component that facilitates extraction of
transmembrane helices in ERAD.

Complementary to extended studies on CFTR, there
are a number of other ABC transporters, which appear
to be ERAD substrates (summarized in Table 1). The
next three chapters concentrate on TAP, its structure,
function and degradation and in particular the circum-
stances under which TAP is destabilized and may be
degraded by ERAD.

Structure and function of the TAP complex

Over the last decade, TAP has been intensively studied,
which resolved its important function in immune defense
mechanisms in vertebrates [for review see (Abele and
Tampé 2006)]. There have been certain hallmarks since the
relevance of TAP in MHC class I presentation pathway was
discovered in 1991 (Spies and DeMars 1991). The details
about peptide recognition and transport (Heemels et al.
1993; Neefjes et al. 1993; Shepherd et al. 1993; Uebel et al.
1997; van Endert et al. 1994) were accompanied by
research on the assembly of the peptide loading complex
(Lindquist et al. 1998; Ortmann et al. 1994, 1997). More

recently, anti-TAP viral immune evasion strategies were
detected [for review see (Loch and Tampé 2005; Ploegh
1998; Wiertz et al. 1997). The finding that the 6+6 trans-
membrane segment core of the TAP transporter was
sufficient to assemble the TAP heterodimer, peptide binding
and translocation contributed to the molecular architecture
of the TAP complex (Koch et al. 2004). Moreover, the
membrane topology of TAP has been elucidated by cysteine-
scanning approaches using thiol-specific fluorophors in semi-
permeabilized cells (Schrodt et al. 2006). Direct evidence for
a tight allosteric coupling between peptide binding, confor-
mational change, translocation and ATP hydrolysis has been
provided (Chen et al. 2003; Gorbulev et al. 2001; Herget
et al. 2007; Neumann et al. 2002).

To sum it up, it is now known that TAP is a hetero-
dimer consisting of TAP1 and TAP2 subunits and trans-
locates the “peptidome” representing the degraded protein
content of the cell (proteome) from the cytosol into the
ER lumen [for review see (Koch and Tampé 2006)]. The
macromolecular MHC class I peptide-loading complex
(PLC), comprising TAP1 and TAP2, tapasin, ERp57,
calreticulin, MHC class I heavy chain and β2m, transfers
the peptides on MHC class I for antigen presentation at the
cell surface (Fig. 2a). This process is highly regulated
within the cell and is stimulated by interferon γ. But what
do we know about TAP degradation and biogenesis? So far,
there are no data on Derlin-1/p97 ERAD interplay as
observed in CFTR biogenesis (see above). Thus, it remains
an open issue whether ERAD plays a role in the ER-
resident TAP complex. However, there are some hints
supporting the idea for a tight regulation of TAP by targeted
proteasomal degradation.

Table 1 Degradation of ABC transporters

ABC transporter Organism Initiation of degradation Ref.

CFTR/ABCC7
(wt and ΔF508)

Human Misfolding Jensen et al. (1995), Ward et al. (1995)

SUR1/ABCC8
(wt and mutants)

Human Lack of K(ATP)
channel misfolding

Crane and Aguilar-Bryan (2004); Yan et al. (2005)

ABCG2
(C592G or C608G)

Human Lack of intramolecular
disulfide bond

Wakabayashi et al. (2007)

ALDP/ABCD1
(several mutants)

Human Mutations in the NBD Takahashi et al. (2007)

TAP2/ABCB3 Human Lack of TAP1 de la Salle et al. (1999), Heintke et al. (2003), Karttunen et al. (2001)
TAP1/2/ABCB2/3 Human Lack of tapasin Garbi et al. (2003), Lehner et al. (1998),

Papadopoulos and Momburg (2007)
TAP1/2/ABCB2/3 Human Viral inhibitors UL49.5

and mK3
Boname et al. (2004), Koppers-Lalic et al. (2005),
Lybarger et al. (2003), Wang et al. (2007)

Pdr5
(ΔC-term and L183P)

Yeast Misfolded NBD de Thozee et al. (2007)

Yor1p (ΔF670) Yeast Space change in NBD Pagant et al. (2007)
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Instability and degradation of TAP2 in TAP1
deficiency (Bare Lymphocyte Syndrome, BLS)

Molecules and disease-associated states that interfere
with the stability of TAP are reconciled in this and the
next chapter to reveal an overall understanding of TAP
biogenesis. Hence, it is known that the TAP2 subunit is
instable upon absence of TAP1 since de la Salle et al.
analyzed cells isolated from Bare Lymphocyte Syndrome
(BLS) type I patients lacking TAP1 expression (de la

Salle et al. 1999), which also exhibited no detectable
levels of TAP2 (Seliger et al. 2001). This finding was
confirmed in various cell lines (Heintke et al. 2003;
Karttunen et al. 2001). In a melanoma cell line, which has
a TAP1 frame shift resulting in an early stop, neither TAP1
nor TAP2 were detected, but expression of TAP2 was
restored upon reintroduction of TAP1 arguing for a
specific stabilizing effect of TAP1 on TAP2 expression
(Seliger et al. 2001). Accordingly, restoring TAP1 expres-
sion in the antigen presentation pathway-deficient mouse
lung carcinoma cell line also leads to recovery of antigen
presentation in these cells (Lou et al. 2005). Furthermore,
there are recent hints that stable, preexisting TAP1 in the
ER awaits synthesis of TAP2 to form the functional TAP
complex protecting newly synthesized TAP2 from rapid
degradation and controlling the number of active trans-
porter molecules (Keusekotten et al. 2006). Thus, the
interaction of both half transporters plays a critical role in
TAP2 stabilization, most likely by influencing TAP2-
targeting for degradation, and may contribute to a tight
regulation of the number of functional TAP molecules in
the cell (Fig. 2b).

TAP stability mediated by tapasin

Tapasin was found to critically interfere with the assembly
of the peptide-loading complex (Ortmann et al. 1997) and
with stability of TAP (Lehner et al. 1998). In human B
lymphoblastoid cells, TAP expression is reduced three- to
tenfold in the absence of tapasin and its expression
significantly stabilizes the TAP complex (Lehner et al.
1998; Tan et al. 2002). Tapasin interacts independently with
TAP1 and TAP2, and the first N-terminal transmembrane
helices of TAP1 and TAP2 are required for tapasin binding
(Koch et al. 2004, 2006). Very recently, the well conserved
connecting peptide residues ED (localized in the ER lumen
close to the putative transmembrane domain) and the
sequence motif (F)xxxFxxxGxxKxxxW in the transmem-
brane helix of tapasin were found to be responsible for the
stabilization of TAP2 (Papadopoulos and Momburg 2007).
Interestingly, a reduced expression of TAP2 was monitored
in certain mutants of the connecting peptide, in which
especially residue 414 of murine tapasin played a key role.
In addition, combined and not single mutations in the
putative transmembrane domain of tapasin influenced
TAP2 expression. The stabilizing effect was contributed to
a sequence motif (four to five residues) located on the same
flank of the predicted transmembrane helix of tapasin, to
which all of the relevant mutations were directed. Overall,
certain residues within the putative tapasin TMD and close
to the ER-luminal membrane are essential for stable
expression of TAP2 (Fig. 2b).

Fig. 2 Proteasomal degradation of TAP. a The TAP1/2 heterodimer
forms the platform for the assembly of the macromolecular MHC class
I peptide-loading complex consisting of tapasin, MHC class I heavy
chain (hc), β2m, ERp57 and calreticulin. The core TAP complex is
shown in dark blue, the N-domain is colored in grey. b TAP2 is
instable in cells lacking TAP1 (left panel). In the absence of tapasin,
TAP is slightly instable (right panel). c TAP1 and TAP2 are targeted
for proteasomal degradation in the presence of the viral factors
UL49.5 (BHV-1, left panel) and mK3 (murine +-herpesvirus-68, right
panel), respectively
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Degradation of TAP upon viral infection

Among a variety of viral immune evasion strategies tar-
geting the peptide-loading complex, there are to date two
known viral factors, which affect the half-life of compo-
nents of the peptide-loading complex (Fig. 2c). The murine
γ-herpesviral protein mK3 encoding an E3 ligase, specif-
ically targets the major histocompatibility complex I heavy
chain (HC) for ER-associated degradation (ERAD)
(Boname et al. 2004; Boname and Stevenson 2001;
Lybarger et al. 2003; Wang et al. 2006, 2007). The other
example is the varicellovirus encoded gene product UL49.5
blocking TAP function by a two-tired mechanism: it first
arrests the transporter in a transport-incompetent conforma-
tion and secondly mediates degradation of the TAP
complex via the proteasome pathway accompanied by a
drastically reduced half-life of TAP (1–2 vs 24–48 h in the
absence of UL49.5) (Koppers-Lalic et al. 2005). UL49.5 is
a non-glycosylated type I transmembrane protein of
approximately 8 kDa with an N-terminal signal peptide
followed by an ER-luminal domain (32 aa), a transmem-
brane helix, and a cytoplasmic tail (17 aa), which exists
both as a monomer and a dimer. The latter either consists of
a disulfide linked homodimer or a heterodimer based on the
conserved interaction with the viral membrane glycoprotein
M (gM) that interferes with UL49.5-mediated TAP inhibi-
tion (Lipinska et al. 2006). The ORF encoding for UL49.5
is well conserved in herpesviruses and TAP inhibition has
been identified for homologs from the bovine herpesvirus 1
(BHV1), the pseudorhabiesvirus (PSV) and the equine
herpesvirus 1 (EHV1). It is worth noting that the viral
factor is degraded itself upon the UL49.5-mediated degra-
dation of TAP1 and TAP2. Contrary to mK3, UL49.5 does
not affect the degradation of MHC class I. Furthermore,
UL49.5 does not contain a RING finger motif and is thus
not believed to act as an E3 ligase on its target TAP. In
summary, either the degradation of TAP or the degradation
of the peptide-loading complex (which then results in
degradation of TAP) are observed in the presence of
specialized viral proteins representing their specific im-
mune evasion strategy; they might prove to examine an
(otherwise rare) event in the cell that will accommodate
further knowledge on TAP ‘fine tuning’.

Conclusions

The ERAD quality control is an established mechanism to
remove misassembled or misfolded proteins and protein
complexes from the ER. However, our knowledge regard-
ing the targeted degradation of membrane proteins is not

yet broad enough. Within the ABC superfamily, the ER-
associated degradation of CFTR (and its misfolded mutant
ΔF508) has been studied in detail. The interaction partners
Derlin-1 and p97 were identified and subsequent ubiquiti-
nation followed by proteasomal degradation was observed.
However, the signals required for ERAD initiation have not
been identified. In particular, the folding and maturation of
ABC transporters in the ER remain unsolved. As summa-
rized in Table 1, structural alterations are often observed in
multi-domain membrane proteins. Subsequent degradation
of ‘folding mutants’ is typical for disease-associated loss-
of-function (CF, BLS). At least for TAP, there also seems to
be a tight regulation involving different factors: the lack of
a transporter subunit or the auxiliary factor tapasin, as well
as the effect of viral modulators (presented in Fig. 2). In the
context of viral immune evasion, mK3 of γ-herpesvirus,
harboring an ubiquitin E3-ligase activity, transfers ubiquitin
onto MHC class I heavy chain and subsequently induces
degradation of the entire peptide-loading complex including
TAP. UL49.5 from bovine herpesvirus arrests TAP in a
transport-incompetent conformation, and in addition indu-
ces its degradation. We propose that, within the transport
cycle, UL49.5 traps an intermediate or ‘dead-end’ state of
the ABC transporter, which is prone to be recognized by the
ER quality control machinery. Taken together, our summary
reveals certain similarities on the targeted degradation of
mammalian ABC transporters. Thus, we hypothesize a
common model of how ER-targeted ABC transporters are
degraded in the cell by the quality control ERAD, reasoning
that certain conformations may even mimic ‘misfolded’
states.
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